-

Discrete Round

October 23rd, 2021

1. [2] Sushanth would like to paint his candy corn to be more unique. He does this by choosing three different colors from the following options: red, orange, yellow, green, blue, purple, and white. How many ways can Sushanth choose the three colors so that his candy corn has a different combination of colors than a normal candy corn?
2. [2] Call a positive integer scary if none of its positive proper divisors are scary. Given that 1 is not scary, how many scary integers are there from 1 to 100 , inclusive?
3. [3] Let $f(x)$ be the function that takes in a terminating real decimal and outputs its last nonzero digit. For example, $f(22.37)=7$ and $f(400)=4$. How many positive integers $1 \leq x \leq 2021$ are there such that $f(x)=f\left(\frac{x}{4}\right)$?
4. [3] Dob stands in the middle of a gigantic neighborhood with n houses. Interestingly, the n houses are situated in a circle centered around Dob so that they are equally spaced. Bobby starts at an arbitrary house for trick-or-treating. Once in a while, Bobby gets bored, so he wants to go to one of the farthest houses he can run in a straight line to. In particular, Dob must not be in the way of Bobby. For how many positive integers n from 3 to 2021 is it possible for Bobby to reach all n houses at some point?
5. [5] If p and q are prime numbers such that p divides $4 q-1$ and q divides $4 p-1$, find the smallest possible value of $p+q$.
6. [5] Jerethy randomly chooses 5 points on a 3 -by- 3 grid to be red. He then draws a segment between any two red points that doesn't pass through any other red points. If the expected number of segments that Jerethy draws can be expressed as $\frac{m}{n}$ in simplest form, what is $m+n$?
7. [6] An arithmetic sequence $a_{1}, a_{2}, a_{3}, \ldots$ is said to be Kodvick-spooky if the following list,

$$
a_{1}, a_{2}+a_{3}, a_{4}+a_{5}+a_{6}, a_{7}+a_{8}+a_{9}+a_{10}, \ldots
$$

is an increasing sequence of consecutive perfect cubes. Find the sum of all possible values of $\sum_{k=1}^{100} a_{k}$ over all possible Kodvick-spooky sequences.
8. [7] Find the largest positive integer $n \geq 2$ such that $n!+861$ is a integer multiple of $n^{2}-1$.
9. [8] Kodvick is playing with a standard 3×3 grid in Terraria. Each second a random 3×1 or 1×3 section of the grid is hit by a meteor fragment. If the expected number of seconds it takes for all squares in the grid to be hit by a meteor fragment can be written as $\frac{m}{n}$ in simplest form, find $m+n$?
10. [9] Jimmy is playing a game with his Halloween candy. Initially, he keeps his 2016 pieces of candy in a single pile and he has a score of 0 . Then, he makes a series of moves, where each move consists of taking one pile of candy and splitting it into two smaller piles. If there were $a+b$ pieces of candy in the original pile and he splits it into a pieces of candy and b pieces of candy, then his score increases by $a b$. However, there is one additional rule he must abide by: no two piles may have the same amount of candy at any time. Given this, what is the highest possible score Jimmy can get?

